|
LIVE CLASS: Data Science Induction
|
|
|
Module 1: Statistics Fundamentals & Advance Excel
|
|
|
|
LIVE CLASS : Module 1 - Statistics and excel with AI (Session - 1)
|
|
|
|
LIVE CLASS : Module 1: - Statistics & Excel with AI (Session - 2)
|
|
|
|
LIVE CLASS : Module 1: - Statistics & Excel with AI (Session - 3)
|
|
|
|
LIVE CLASS : Module 1: - Statistics & Excel with AI (Session - 4)
|
|
|
|
Basic Excel - Training
|
|
|
|
Basic Excel Exercises -1
|
|
|
Module 2: SQL Fundamentals
|
|
|
|
LIVE CLASS : Module 2 - Structure Query Language (SQL) - Session - 1
|
|
|
|
LIVE CLASS : Module 2 - Structure Query Language (SQL) - Session - 2
|
|
|
|
LIVE CLASS : Module 2 - Structure Query Language (SQL) - Session - 3
|
|
|
|
LIVE CLASS : Module 2 - Structure Query Language (SQL) - Session - 4
|
|
|
|
LIVE CLASS : Module 2 - Structure Query Language (SQL) - Session - 5
|
|
|
|
Session 5_27 July
|
|
|
Module 3: Python for Data Science
|
|
|
|
LIVE CLASS: Module 3 - Installing Python IDE and basics
|
|
|
|
LIVE CLASS: Module 3 - Python Loops and Data Sturctures
|
|
|
|
LIVE CLASS: Module 3 - Numpy & Pandas
|
|
|
|
LIVE CLASS: Module 3 - Pandas & Matplotlib
|
|
|
|
LIVE CLASS: Module 3 - Matplotlib (Final Class on Python basics)
|
|
|
|
1.Python-basics-1
|
|
|
|
4.Pandas_GTR-4
|
|
|
|
5.Matplotlib_GTR-5
|
|
|
|
2.Python-Data Structures-2
|
|
|
|
3.Numpy_Library
|
|
|
|
Feedback for Python basics (Trainer - Kabiir)
|
|
|
Module 4: Inferential Statistics (including probability and Random numbers)
|
|
|
|
LIVE CLASS: Module 4: - Probability & Random Numbers
|
|
|
|
LIVE CLASS: Module 4: - Distributions & Central Limit Theorem (CLT)
|
|
|
|
LIVE CLASS : Module 4 - Hypothesis and Types of Errors
|
|
|
|
LIVE CLASS : Module 4 - Steps in Hypothesis Testing
|
|
|
|
LIVE CLASS : Module 4 - z-Test, t-Test and ANOVA
|
|
|
|
Inferential_Statistics_GTRAcademy
|
|
|
|
Hypothesis Testing-Intution
|
|
|
|
GTRAcademy-Parametric & Non- Parametric Tests
|
|
|
|
Datasets
|
|
|
|
LIVE CLASS : Module 4 - ANOVA and Chi Sqare Test
|
|
|
|
GTR_Inferential_Statistics_Assignment-2025
|
|
|
Module 5: Machine Learning
|
|
|
|
LIVE CLASS: Module 5 - Introduction to Machine Learning
|
|
|
|
LIVE CLASS: Module 5 - Machine Learning - Session - 2
|
|
|
|
LIVE CLASS: Module 5 - Machine Learning - Session - 3
|
|
|
|
LIVE CLASS: Module 5 - Machine Learning - Session - 4
|
|
|
|
LIVE CLASS: Module 5 - Machine Learning - Session - 5
|
|
|
|
Unsupervised learning
|
|
|
|
Model evaluation and optimization
|
|
|
|
Advanced ML topics
|
|
|
|
Machine_Learning
|
|
|
|
LIVE CLASS: Module 5 - Machine Learning - Session - 6
|
|
|
|
LIVE CLASS: Module 5 - ML_Ensemble Models - Session - 7
|
|
|
Module 4: Power BI
|
|
|
|
Introduction to Power BI
|
|
|
|
Data visualization
|
|
|
|
Dashboards and reports
|
|
|
|
Advanced features
|
|
|
Module 5: Artificial Intelligence
|
|
|
|
Introduction to AI
|
|
|
|
Machine learning algorithms
|
|
|
|
Deep learning concepts
|
|
|
|
AI applications
|
|
|
Module 7: Natural Language Processing
|
|
|
|
Text preprocessing
|
|
|
|
Text classification
|
|
|
|
Sentiment analysis
|
|
|
|
Language modeling
|
|
|
|
test
|
|